BioTheRoS-Workshop, Wien Energie – Research and Energy Technology, Christoph Ponak, 12.03.2025

The need for platform technologies in industrial-scale applications

© Wien Energie | public

Agenda

- Decarbonisation of District Heating in Vienna
- Asset Overview Wien Energie
- R&D @ Wien Energie
- Platform Technology vs. Silver Bullets
- Conclusion

Decarbonisation of District Heating in Vienna

Heating Energy Demand in Vienna

District heating (DH) as the backbone of Vienna's heat supply

Source: Wien Energie, Compass Lexecon, Dekarbonisierungsstudie 2023, Fokus auf Wärme Wien

District Heating Vienna - 2040

Six Factors for Decarbonisation

- Heat pumps
- Geothermal energy
- CCUS (waste incineration)
- Seasonal energy storage
- Green gases in power plants
- Lower temperature in DH

Source: Wien Energie, Compass Lexecon, Dekarbonisierungsstudie 2023, Fokus auf Wärme Wien

Asset overview – Wien Energie

Asset Overview Wien Energie

Asset Overview Wien Energie (Umwelterklärung 2023, Data from 2022)

- Waste Treatment (50-75 MW_{th} each)
 - Thermal Waste Treatment and thermal power station (340 MW_{th}) Spittelau (1)
 - Thermal Waste Treatment Flötzersteig (2)
 - Thermal Waste Treatment Simmeringer Haide (3)
- Electricity/District Heating
 - Thermal power station Arsenal (340 MW_{th}) (5)
 - Power plants Simmering (1,100 MW_{th}/1,300 MW_{el}) (6)
 - Thermal power station Inzersdorf (340 MW_{th}) (7)
 - CHP Donaustadt (350 MW_{th}/400 MW_{el}) (8)
 - Thermal power station Leopoldau (230 MW_{th}) (9)
 - Bioenergy (~ 40 MW_{th}), Hydro (31 MW), Wind (131 MW), Solar (114 MW)
- additional Wind, Solar and Hydro Plants in AT, D, Southern Europe

R&D @ Wien Energie

Asset Decarbonisation and New Technologies

We guarantee a climate neutral future for the citizens of Vienna through innovative solutions. Our affordable, resource efficient projects make Vienna a global role model.

Our Focal Points

Climate neutral by 2040

Platform Technology vs. Silver Bullets

Example for Decarbonisation Efforts: Green Hydrogen

Overview of selected hydrogen derivatives

Source: Hebling, C. (Fraunhofer ISE): 80. Sitzung des Parlamentarischen Beirates für nachhaltige Entwicklung, Berlin, 19.05.2021

Smashicons via Flaticon.com

WIEN ENERGIE

A Holisitc View: Carbon Emissions Along the Supply Chain

- Assumptions:
 - All processes along the supply chain (excl. transport) are electrified.
 - The electricity-related emissions are as low as today's Austrian **production-associated** emissions of < 100 g/kWh.
 - The methane combustion reference scenario includes combustion and supply chain emissions.

Derivative	H ₂ content [% (m/m)]	Efficiency (excl. transport, H ₂ -H ₂) [%]	Der	rivative	CO ₂ -eq. of supply chain in comparison to CH ₄ -use [%]
Ammonia	17.65	46.75	Am	nmonia	91.32
Efficiency along the supply chain				Emissions along the supply chain	

- Conclusions:
 - There is a huge dependency on the global renewable energy and green hydrogen economy and infrastructure.
 - Technology lock-ins bear the risk of increasing global emissions or minimise them only marginally.
 - Flexibility is required.

Potential Use Cases of W2V for WE

- Sustainable fuel for buses of Wiener Linien
 → focus shift to H₂/electrification
- Sustainable fuel for cold start capacity of power plants/peak heat demands
- Sustainable methane for power plants/ peak heat demands
- Green hydrogen carriers for power plants (e.g. MeOH)
- Sales of green chemicals/fuels (SAF, not fuel for individual transport) and certificate generation
- Off-heat use (DH system integration)

Conclusion

Conclusion

Platform Technology Advantages

- Biomass gasification as a platform technology offers flexibility in a fast-evolving world and economy.
- For WE as a heat provider, the system integration of this technology is crucial and offers beneficial synergies.
- Research Hubs in close proximity to WE's assets enable accelerated industrialisation.

Please feel free to contact...

Christoph Ponak Expert Research and Energy Technology +43 (0) 664 8848-2500 christoph.ponak@wienenergie.at

© Wien Energie | public

BioTheRoS-Workshop, Wien Energie – Research and Energy Technology, Christoph Ponak, 12.03.2025

The need for platform technologies in industrial-scale applications

© Wien Energie | public